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ABSTRACT G proteins play a pivotal role in
cellular signaling by acting as molecular
switches that undergo conformational changes
upon binding GTP. The primary sequence consti-
tuting the binding cleft among the �160 G pro-
teins in the human genome is highly conserved,
consistent with the fact that these proteins share
similar guanine nucleotide-binding characteris-
tics. Recent work has demonstrated the feasibil-
ity of designing new analogs of GTP that can
specifically activate G proteins whose
nucleotide-binding sites have been remodeled
through mutagenesis. This strategy has the po-
tential to provide new insights into how G pro-
teins act as molecular switches that engage their
downstream target/effector proteins to generate
specific signaling outputs.

Small-molecule design for the pur-
pose of inhibiting or otherwise alter-
ing the activity of key cellular signal-

ing events continues to be a cornerstone of
modern pharmacology and, indeed, modern
medicine. The search for the perfectly fit-
ting key (i.e., a small molecule) that provides
the desired outcome of modulating the ac-
tivity of a specific protein has more recently
been extended to redesigning the lock (pro-
tein) as well. Here, the goal is to structurally
distinguish the altered protein�small mol-
ecule pairing from the significant back-
ground of closely related proteins by the ra-
tional design of a new and sufficiently
distinctive protein�small molecule inter-
face. The highly specific binding interaction
between a synthesized “unnatural” ligand
and the target protein, which has been mu-
tated in a manner that allows it to optimally
bind the altered ligand, in principle, pro-
vides a method possessing great specificity
for studying the downstream consequences
of the targeted signaling protein.

Advances in the field of protein�small
molecule interface remodeling, as a recent
paper by Shah and colleagues (1) illus-
trates, begin to frame the possibilities of a
chemical-genetic approach for studying
G-protein-mediated cell signaling events.
Nucleotide-binding proteins in general (e.g.,
protein kinases and G proteins) offer some
especially attractive possibilities for the in-
terface engineering approach because the
mammalian genome contains �500 genes
encoding protein kinases (2) and �160
genes that encode G proteins (3). Indeed,
protein kinases, which use ATP for phospho-
ryl transfer, have previously been shown to

be promising candidates for the chemical-
genetics approach (4). Shah and colleagues
(1) now turn the attention to G proteins,
which use GTP for conformational switching.

In contrast to protein kinases, for which
several cases exist where active-site-
directed inhibitors have been used to ob-
tain information about their function, no ef-
fective active-site inhibitors have been iden-
tified for G proteins. This may be due in
part to their extremely high affinity for gua-
nine nucleotides (Kd in the picomolar
range). Thus, the development of new
chemical-genetic strategies for modulating
G protein function would seem to be espe-
cially worthwhile and timely. As Shah and
colleagues (1) point out in their paper, G
proteins have been the object of chemical-
genetic strategies in the past, by mutation of
H-Ras that allows it to use XTP instead of
GTP (5). However, this approach has sev-
eral shortcomings, not the least of which are
the low intracellular concentrations of XDP
and XTP and the tendency of H-Ras mutants
designed to bind XTP to bind GTP instead
(given its higher cellular concentrations) and
thus to be constitutively active in cells.
Therefore, Shah and colleagues (1) aug-
ment this approach by rationally designing
an H-Ras mutant that maintains its natural
nucleotide selectivity but is susceptible to
specific orthogonal small molecules (nucle-
otide analogs). Their overall goal is to de-
velop a system that allows for specific
modulation (either activation or inhibition)
of any G protein of interest. Toward this end,
it was necessary that they satisfy various cri-
teria. In particular, they needed to create an
additional binding pocket in H-Ras within
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the vicinity of the active site, while still pre-
serving the G protein’s ability to bind GDP
and GTP and to respond to its various regu-
lators and target/effectors. In addition, they
needed to design orthogonal molecules that
possessed greater affinity than either GDP
or GTP and did not bind to the wild-type pro-
tein (but only to the mutated G protein).

The authors outline in their study how all
of these criteria were met. Thus, they were
able to demonstrate a high degree of speci-
ficity for the regulation of the well-studied
oncogenic G protein H-Ras by pairing a syn-
thetic guanosine nucleotide analog with an
altered GTP-binding site that better accom-
modates the analog’s bulkier hydrophobic
guanosine ring substitution.

Figure 1 shows the optimized result of
mixing and matching mutated Ras proteins
with the unnatural GTP molecule that pro-
vides the highest specificity based on the
preference of the H-Ras mutants for this ana-

log when com-
pared with the
naturally oc-
curring GTP.
Although the
selectivity pro-
vided by the
newly de-
scribed GTP/
H-Ras inter-
face is
significant
(�5-fold), one
can imagine
that even
greater affinity
differences
(and therefore
selectivity)
may well be
possible by
using the it-
erative ap-
proach out-
lined in this
work. By sys-

tematic examination of different in silico
docking approaches, coupled with the cus-
tom synthesis of new nucleotides to fit
precisely sculpted binding sites, it should
be possible to achieve highly selective
stimulation of the G protein of interest,
thereby providing a new tool for the study
of G-protein-mediated cell signaling
networks.

One might ask what advantages this ap-
proach holds over current methods for G
protein pathway analysis. The authors show
that their approach can be applied to other
G proteins, by demonstrating the applicabil-
ity of their strategy using the Ras-related pro-
tein, Rap1. They also suggest that their
chemical-genetic tool will help to uncover
novel H-Ras effectors and, in fact, use the
approach to identify a new putative effector
protein, Nol1 (proliferating cell nucleolar
protein p120). Time will tell whether in fact
Nol1 turns out to be an important player in

Ras-dependent signaling events. However,
it is less obvious just how advantageous the
chemical-genetic approach will be for identi-
fying target/effectors, given that epitope-
tagging specific G proteins that possess ei-
ther an activating or deactivating point
mutation has been an extremely powerful
tool in the hands of cell biologists for some
time (6, 7). Ectopically expressed, tagged G
proteins can be observed in fixed or living
cells and can be coimmunoprecipitated with
binding partners, providing a straightfor-
ward way to isolate and identify novel down-
stream effectors (8). Similarly, bead-
immobilized recombinant G proteins and,
in particular, GST-coupled G proteins specif-
ically loaded with either nonhydrolyzable
GTP analogs or GDP or depleted of nucle-
otide have provided a wealth of information
when used as specific affinity resins or in
“pull-down” assays (9). At least in these ex-
perimental formats, it is hard to make a
case that selective interface engineering
will uncover new G-protein-binding interac-
tions that have been undetectable and
undiscovered by the aforementioned
approaches.

Nonetheless, one can imagine some ex-
citing possibilities for the chemical-genetic
approach in studying G-protein-coupled sig-
naling events. One potentially interesting av-
enue may be through the monitoring of im-
portant conformational transitions that
accompany the binding of a G protein to
one of its regulators. For example, in the
case of the heterotrimeric G proteins that
are coupled to seven-membrane spanning
(heptahelical) receptors, little is known
about the complex set of interactions occur-
ring in G protein �-subunits that are trig-
gered by their interaction with an activated
receptor and that initiate the intramolecular
switch communication that precedes nucle-
otide exchange (i.e., the G protein activation
event). Custom design of guanosine triphos-
phate nucleotides that interact with differ-
ent critical binding pocket residues in pre-
dicted ways might offer an extremely
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Figure 1. Surface drawings of H-Ras derived from the X-ray crystal structure
(Protein Data Bank entry 1Q21) showing the space-filling differences adja-
cent to the nucleotide-binding pocket. Shown in blue are the side chains of
amino acids 116 and 19 where these are asparagine and leucine in the wild-
type structure (left) and the alanine substitutions at these positions that cre-
ate room for the hydrophobic ethyl-phenyl moiety (yellow) present on the
“unnatural” C(7)-deazaguanine inhibitor. The additional hydrophobic interac-
tions provided by the dialanine�ethyl-phenyl interaction underlies the �5-
fold greater affinity of the mutant Ras protein for the inhibitor over GDP.
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sensitive tool for reading-out the conforma-
tional dynamics that occur prior to nucle-
otide dissociation. For this purpose, one
might design a fluorophore “alcove” adja-
cent to the nucleotide-binding pocket that
provides an appropriate microenvironment
for enhancing the emission from a fluores-
cent nucleotide analog. This could offer a
valuable method for assaying directly the
switch communication that accompanies re-
ceptor binding and results in G protein acti-
vation. The limits of this approach may lie in
the degree that the nucleotide pocket can
be deformed before its binding capability is
severely impaired. Nevertheless, a small
fluorescent moiety such as N-methyl-
anthraniloyl, which has been used success-
fully as a fluorescent GTP analog when at-
tached to the ribose hydroxyls (10), could in-
stead be coupled to the purine ring. This,
together with some fine-tuning of the
nucleotide-binding pocket through mu-
tagenesis, might then provide a viable strat-
egy for monitoring conformational changes
in real time that occur within specific G pro-
teins as an outcome of their activation.

Ultimately, one can even imagine that
these strategies might be applied to stud-
ies of G protein activation and signaling in
cells. Admittedly, cell studies with the engi-
neered G protein interface present some
technical barriers that will likely have to be
overcome before this approach can have
broad-scale use in monitoring G protein ac-
tivation and accompanying signaling events
in cells. In particular, in order to induce the
selective activation of the engineered pro-
teins expressed in cells by unnatural nucle-
otide, these analogs must be cell-perme-
able. In principle, this problem could be cir-
cumvented by detergent permeabilization,
or perhaps through a whole cell patch con-
figuration, prior to the addition of the nucle-
otide analog of interest, allowing for the se-
lective activation of a given G protein. Thus,
it is not difficult to imagine that in the not-
too-distant future, it will be possible to fol-
low G-protein-mediated cellular signaling

activities on a very short time scale by us-
ing the appropriate pairings of nucleotide
and protein. Selective activation using inter-
face engineering coupled with the rapid ad-
dition of nucleotide to permeabilized cells
might ultimately provide a way of monitor-
ing the sequence of events leading to G pro-
tein activation (as an outcome of nucle-
otide exchange) or the steps that follow
and lead to a specific signaling output. With
the rapid rate in the development of custom-
ized nucleotide analogs, together with bet-
ter molecular modeling approaches, the fu-
ture development of these molecular tools
holds promise for expanding our knowledge
of G-protein-coupled cell signaling
pathways.
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